变频器参数设定方法——森兰

发布时间:2024-8-30 12:03:23|来源: 希望森兰

1.操控办法:

  即速度操控、转距操控、 PID 操控或其他办法。采取操控办法后,一般要依据操控精度进行静态或动态辨识。

  2.最低作业频率:

  即电机作业的最小转速,电机在低转速下作业时,其散热性能很差,电机长期作业在低转速下,会导致电机焚毁。并且低速时,其电缆中的电流也会增大,也会导致电缆发热。

                              

  3.最高作业频率:

  一般的变频器最大频率到 60Hz ,有的乃至到 400 Hz ,高频率将使电机高速作业,这对一般电机来说,其轴承不能长期的超额外转速作业,电机的转子是否能承受这样的离心力。

  4.载波频率:

  载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

  5.电机参数:

  变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数能够从电机铭牌中直接得到。

  6.跳频:

  在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在操控紧缩机时,要避免紧缩机的喘振点。

  7.加减速时刻

  加快时刻便是输出频率从 0 上升到最大频率所需时刻,减速时刻是指从最大频率下降到 0 所需时刻。通常用频率设定信号上升、下降来确定加减速时刻。在电动机加快时须约束频率设定的上升率以避免过电流,减速时则约束下降率以避免过电压。

  加快时刻设定要求:将加快电流约束在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时刻设定关键是:避免平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时刻可依据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时刻,经过起、停电动机观察有无过电流、过电压报警;然后将加减速设守时刻逐渐缩短,以作业中不发生报警为原则,重复操作几次,便可确定出最佳加减速时刻。

  8.转矩提高

  又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩下降,而把低频率范围 f/V 增大的办法。设定为主动时,可使加快时的电压主动提高以补偿起动转矩,使电动机加快顺利进行。如选用手动补偿时,依据负载特性,尤其是负载的起动特性,经过实验可选出较佳曲线。对于变转矩负载,如挑选不妥会呈现低速时的输出电压过高,而糟蹋电能的现象,乃至还会呈现电动机带负载起动时电流大,而转速上不去的现象。

  9.电子热过载维护

  本功用为维护电动机过热而设置,它是变频器内 CPU 依据作业电流值和频率计算出电动机的温升,从而进行过热维护。本功用只适用于 “ 一拖一 ” 场合,而在 “ 一拖多 ” 时,则应在各台电动机上加装热继电器。

  电子热维护设定值 (%)=[ 电动机额外电流 (A)/ 变频器额外输出电流 (A)]×100% 。

  10.频率约束

  即变频器输出频率的上、下限幅值。频率约束是为避免误操作或外接频率设定信号源出毛病,而引起输出频率的过高或过低,以防损坏设备的一种维护功用。在应用中按实际情况设定即可。此功用还可作限速使用,如有的皮带运送机,因为运送物料不太多,为削减机械和皮带的磨损,可选用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带运送机作业在一个固定、较低的作业速度上。

  11.偏置频率

  有的又叫误差频率或频率误差设定。其用处是当频率由外部模拟信号 ( 电压或电流 ) 进行设守时,可用此功用调整频率设定信号最低时输出频率的高低 。有的变频器当频率设定信号为 0% 时,误差值可作用在 0 —— fmax 范围内,有的变频器 ( 如明电舍、三垦 ) 还可对偏置极性进行设定。如在调试中当频率设定信号为 0% 时,变频器输出频率不为 0Hz ,而为 xHz ,则此时将偏置频率设定为负的 xHz 即可使变频器输出频率为 0Hz 。

  12.频率设定信号增益

  此功用仅在用外部模拟信号设定频率时才有用。它是用来弥补外部设定信号电压与变频器内电压 (+10v) 的不一致问题;一起便利模拟设定信号电压的挑选,设守时,当模拟输入信号为最大时 ( 如 10v 、 5v 或 20mA) ,求出可输出 f/V 图形的频率百分数并以此为参数进行设定即可;如外部设定信号为 0 —— 5v 时,若变频器输出频率为 0 —— 50Hz ,则将增益信号设定为 200% 即可。

  13.转矩约束

  可为驱动转矩约束和制动转矩约束两种。它是依据变频器输出电压和电流值,经 CPU 进行转矩计算,其可对加减速和恒速作业时的冲击负载康复特性有明显改进。转矩约束功用可实现主动加快和减速操控。假定加减速时刻小于负载惯量时刻时,也能保证电动机依照转矩设定值主动加快和减速。

  驱动转矩功用供给了强大的起动转矩,在稳态作业时,转矩功用将操控电动机转差,而将电动机转矩约束在最大设定值内,当负载转矩忽然增大时,乃至在加快时刻设定过短时,也不会引起变频器跳闸。在加快时刻设定过短时,电动机转矩也不会超越最大设定值。驱动转矩大对起动有利,以设置为 80 —— 100% 较妥。

  制动转矩设定数值越小,其制动力越大,合适急加减速的场合,如制动转矩设定数值设置过大会呈现过压报警现象。如制动转矩设定为 0% ,可使加到主电容器的再生总量接近于 0 ,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。但在有的负载上,如制动转矩设定为 0% 时,减速时会呈现时间短空转现象,形成变频器反复起动,电流大幅度动摇,严峻时会使变频器跳闸,应引起注意。

  14.加减速形式挑选

  又叫加减速曲线挑选。一般变频器有线性、非线性和 S 三种曲线,通常大多挑选线性曲线;非线性曲线适用于变转矩负载,如风机等; S 曲线适用于恒转矩负载,其加减速改动较为缓慢。设守时可依据负载转矩特性,挑选相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线挑选非线性曲线,一起动作业变频器就跳闸,调整改动许多参数无作用,后改为 S 曲线后就正常了。究其原因是:起动前引风机因为烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了 S 曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功用的变频器所选用的办法。

  15.转矩矢量操控

  矢量操控是依据理论上以为:异步电动机与直流电动机具有相同的转矩发生机理。矢量操控办法便是将定子电流分解成规定的磁场电流和转矩电流,别离进行操控,一起将两者合成后的定子电流输出给电动机。因此,从原理上可得到与直流电动机相同的操控性能。选用转矩矢量操控功用,电动机在各种作业条件下都能输出最大转矩,尤其是电动机在低速作业区域。

  现在的变频器几乎都选用无反应矢量操控,因为变频器能依据负载电流大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于大都场合已能满足要求,不需在变频器的外部设置速度反应电路。这一功用的设定,可依据实际情况在有用和无效中挑选一项即可。

  与之有关的功用是转差补偿操控,其作用是为补偿由负载动摇而引起的速度误差,可加上对应于负载电流的转差频率。这一功用主要用于定位操控。

  16.节能操控

  风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成份额减小,而具有节能操控功用的变频器设计有专用 V/f 形式,这种形式可改进电动机和变频器的功率,其可依据负载电流主动下降变频器输出电压,从而到达节能目的,可依据具体情况设置为有用或无效。

  要阐明的是,九、十这两个参数是很先进的,但有一些用户在设备改造中,底子无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。究其原因有:

  (1) 原用电动机参数与变频器要求配用的电动机参数相差太大。

  (2) 对设定参数功用了解不够,如节能操控功用只能用于 V/f 操控办法中,不能用于矢量操控办法中。

  (3) 启用了矢量操控办法,但没有进行电动机参数的手动设定和主动读取作业,或读取办法不妥。

更多相关内容
PLC控制皮带输送机软启动方法 PLC控制皮带输送机软启动方法

皮带运送机是接连运送机傍边的一种,接连运送机是固定式或保送式起重机中主要的类型之一。皮带运送机是使用摩擦力传送动动,以皮带、钢带、钢纤带和化纤维带作为传送物料和牵引作业的一种顺应才 ...

变频控制方式的变迁——森兰 变频控制方式的变迁——森兰

在实践调速过程中,一个一般的频率可调的沟通电源并不能满意对异步电动机进行调速操控的要求,还必须考虑到有用使用电动机磁场、按捺发动电流和得到抱负的转矩特性,如低频转矩特性等方面的问题 ...

在起重机控制系统中加入变频器原因——森兰 在起重机控制系统中加入变频器原因——森兰

在引入变频器之前,桥式起重机操作员运用基于接触器的操控装置操控起重机。关于低负载循环起重机,体系装备单速或双速电机。关于更高负荷循环的起重机,他们运用所谓的绕线转子电动机。 ...

工控电路板电容损坏故障特点及维修——森兰 工控电路板电容损坏故障特点及维修——森兰

电容损坏引发的问题在电子设备中是最高的,其间特别以电解电容的损坏最为常见。   电容损坏体现为:1.容量变小;2.彻底失去容量;3.漏电;4.短路。   电 ...

希望森兰变频器助力企业可持续生产 希望森兰变频器助力企业可持续生产

随着国民经济的快速发展,自备电厂装机容量和输配电网规划不断扩大。电力系统产生故障后,假如不能敏捷康复供电,则会造成巨大的经济损失和严峻的社会影响。如何保证企业的安全安稳、长周期出产 ...

变频器使用误区——森兰变频器 变频器使用误区——森兰变频器

选择不当   这个应该是朋友们遇到Z多的状况了,大马拉小车,小马拉大车的状况举目皆是。大马拉小车还算好,最少运用上没太大问题,Z多投资添加了点,设备仍是能正常运转的;但是小马拉大车就 ...

认识变频器的电容器——森兰变频器 认识变频器的电容器——森兰变频器

1、电容在电路中一般用“C”加数字表明(如 C25 表明编号为 25 的电容)。   电容是由两片金属膜紧靠,中心用绝缘材料离隔而组成的元件。电容的特性首要是隔直流 通沟通。电容容量的巨细就是 ...

森兰变频器和软启动器区别 森兰变频器和软启动器区别

变频器是什么?   变频器是把电压、频率固定不变的沟通电变换成电压、频率可变的沟通电的变换器称为变频器。它是主要用于需求调速的当地,它的输出不仅改动电压还一起改动频率;软发动器实其 ...

变频器内部电子元器件损坏及维修——希望森兰 变频器内部电子元器件损坏及维修——希望森兰

1.修理变频器整流块损坏   变频器整流桥的损坏也是变频器的常见故障之一,前期生产的变频器整流块均以二极管整流为主,现在部分整流块选用晶闸管的整流方式(调压调频型变频器)。   中、 ...

控制变频器的悬停功能操作及原理——森兰变频器 控制变频器的悬停功能操作及原理——森兰变频器

操控变频器的悬停功能是怎样操作的 变频器的悬停功能原理是什么?   异步电机在转速为0时,编码器反应没有意义,需要转换成V/F操控,频率设定为0;电压设定为此刻电机答应承受电流的0速电压 ...

森兰低压变频器四种系列应用 森兰低压变频器四种系列应用

1.SB200风机水泵专用型变频器,广泛应用于纺织、印染、洗刷、线缆、包装、机械、陶瓷、恒压供水、恒温操控或各种OEM。   2.HG1000高性能轻载智能型变频器 ...

森兰低压SB70变频器在位置控制中应用 森兰低压SB70变频器在位置控制中应用

森兰低压SB70变频器集成了高精度转子磁场定向矢量操控算法,具有250%瞬时转矩操控能力。具有独创的多形式PLC运行功用,特别合适工业洗刷设备、制造设备使用。实用的多段速功用:两套参数,可根 ...

森兰变频器软启动优点 森兰变频器软启动优点

森兰变频器和软启动是一种**、可靠、可靠的电机控制系统,它能够满足各种应用需求。期望森兰变频器和软启动的优点在于:   1、**性:期望森兰变频器和软启 ...

导轨电源正确接线方式 导轨电源正确接线方式

导轨式电源是一种经过导轨式进行装置的开关电源,主要是起到对设备的电压、电流、温度等不同方面进行监控,这样一来就可以起到很好的维护效果。这种开关电源具有体积小和重量轻等多种不同特点, ...

变频器的过载跳闸分析 变频器的过载跳闸分析

电动机能够旋转,但运转电流超越了额定值,称为过载。过载的根本反映是:电流虽然超越了额定值,但超越的起伏不大,一般也不构成较大的冲击电流。   1、过载的主要原因   (1)机械负荷过 ...

电机启动方式——森兰变频器 电机启动方式——森兰变频器

变频器是使用电力半导体器件的通断效果将工频电源变换为另一频率的电机操控(调速)装置。   组成一:   1、整流单元:将作业频率固定的沟通电转化为直流 ...

森兰变频器应用中抗干扰措施 森兰变频器应用中抗干扰措施

变频器在应用中的搅扰首要表现为:高次谐波、噪声与振荡、负载匹配、发热等问题。这些搅扰是不可避免的,因为变频器的输入部分为整流电路,输出部分为逆变电路,它们都是由起开关效果的非线性元件组 ...

变频器选型和容量匹配注意事项——森兰 变频器选型和容量匹配注意事项——森兰

一、依据负载特性挑选变频器   二、挑选变频器时应以实践电机电流值作为变频器挑选的依据,电机的额定功率只能作为参阅。其次,应充分考虑变频器的输出含有高次谐波,会形成电动机的功率因数 ...

变频器应用误区及弊端解决方法——森兰变频器 变频器应用误区及弊端解决方法——森兰变频器

误区:变频器选型只需考虑负载功率   许多用户在采购变频器时,通常只根据驱动电动机的功率来匹配变频器容量。其实,电动机所带动的负载不一样,对变频器的要求也不一样。 ...

森兰变频器制动电阻接法 森兰变频器制动电阻接法

假设变频器带有内置制动单元和附加制动电阻器,请务必留意制动电阻器的正确接线。制动电阻应接在P端和DB端之间, 而不能接在P端和n端之间,否则三相整流桥在不工作时会满负荷作业,导致设备无法 ...

栏目导航
客服中心

在线咨询:QQ


联系方式联系方式

联 系 人:黄经理

联系QQ:3271883383

联系电话:13522565663


扫码添加微信(手机端请先保存图片)

工作时间工作时间

工作日:9:00-17:00

节假日:仅处理紧急事件

Contact us

联系我们

联系电话 QQ咨询
QQ咨询

3271883383

公司地址
返回顶部