Fisher费希尔 - 调节阀为什么会震动?原因分析

发布时间:2021-9-24 16:40:53|来源: 费希尔/Fisher

调节阀的振动一般分为两种状态,一个是调节阀的整体振动,即整个调节阀在管道或基座上频繁颤动。另一个是调节阀阀芯的振动,这从阀杆上下频繁的移动可看出,以下就这两种振动原因及其处理

措施分析如下:

1、调节阀整体振动

整个调节阀在管道上振动原因大致如下:管道或基座剧烈振动,易引起整个调节阀振动;此外还与频率有关,即当外部的频率与系统的固有频率相等或接近时受迫振动的能量达到***大值、产生共振。这两种因素有时相互影响,会使振动愈振愈烈,使管道跳动,附件或元件松动,并发出哒哒的响声,严重的还会造成阀杆断裂,阀座脱落,致使系统无法工作。基于这种情况,应对引起振动的各管道和基座进行加固,这也有助于消除外来频率的干扰。

2、阀芯振动有时被测介质的流速急剧增加,使调节阀前后差压急剧变化,当超过阀的刚度时,阀的稳定性就变差,这也会引起整个调节阀产生严重振荡。但这种振荡不一定就是阀的开度小造成的。这种振动一般伴有刺耳的尖叫声。调节阀的稳定性差,一旦有内部或外部不平衡力的干扰且超过了调节阀的刚度时,且调节阀自己又不具备消除这种干扰的能力,便产生了振荡。此时需要增大调节阀的刚度,如将20——100KPa的弹簧,或增加其工作的稳定性,是有一定好处的。

调节阀安装位置应远离振动源,如不可避免,应采取预防措施。 这种整个调节阀振动,在还未达到共振的情况下,调节阀基本上还是能随外给定信号而进行调节的。因为外给定信号对阀芯的相对位移,并不因整个调节阀的振动而改变或改变很小,其原因在于它们是一个整体。 调节阀两端的截止阀猛开或猛关,会使急剧流动的波测介质产生强烈的反射冲波,反射波冲击调节阀芯。当这个力大于膜片对阀芯向下的压力时,会使阀芯上移,产生振动,尤其是在小信号情况下,由于预紧力较小,更易使阀芯产生颤动。 调节阀开度太小,使调节阀前后差压太大,至使在节流口处流速增大,压力迅速减小。若此时压力下降到液体在该温度下的饱和蒸气压时,可使液体产生气化,形成闪蒸,生成气泡、气泡破裂时形成强大的压力和冲击波,产生气锤,这个压力一般可达几十兆帕。气锤冲击阀芯,使阀芯形成蜂窝壮麻面并使阀芯振动。 一般阀芯振动原因大致如下:调节器输出信号不稳定。快速的忽高忽低的变化,此时如阀门定位器灵敏度太高,则调节器输出微小的变化或飘移,就会立即转换成定位器输出信号很大。致使阀振荡。

调节阀的磨擦力太小,如调节阀的填料装得太少,或压盖没拧紧,外界输入信号有微小的变化或飘移,会立即传递给阀芯,使阀芯振动,并发出咯咯的响声。相反,如调节阀的磨擦力太大,如填料装得太多,压盖又拧得太紧,或填料函老化,干涸,则在小信号时动作不了,信号大时一经动作又产生又产生过头的现象,会使调节阀产生迟滞性振荡,振动曲线近似呈方形波。遇到这种情况,应当减小调节阀相应部分的阻尼来解决,如更换填料等。气源波动使定位器输出波动,或定位器活动部分锈蚀,不灵活,使输入和输出信号不对应,产生跳跃式振荡。此时应开启气源减压阀的清洗定位器,并向活动部分涂上润滑油,以消除磨擦力。 由于调节阀本身的不平衡力作用的结果,使调节阀芯经常产生振荡。零点弹簧顶紧力太小,抵抗外界干扰的能力就小,在外界信号小的情况下,易使阀芯产生振动。 综上所述,根据实践经验笔者诊断,在一般情况下,阀芯的振荡对被测介质的影响总是大于整个调节阀振动对被测介质影响的,并且阀芯振荡原因及预防措施总要比整个调节阀振荡原因及预防措施复杂。实践中又可以看出,这两种振动的原因也不可能分得那么清,有时也是混杂交织在一起的

调节阀的振动与噪声根据其诱发因素不同,大致可分为机械振动、气蚀振动和流体动力学振动等原因。

1 机械振动

机械振动根据其表现形式可以分为两种状态。一种状态是调节阀的整体振动,即整个调节阀在管道或基座上频繁颤动,其原因是由于管道或基座剧烈振动,引起整个调节阀振动。此外还与频率有关,即当外部的频率与系统的固有频率相等或接近时受迫振动的能量达到***大值、产生共振。另一种状态是调节阀阀瓣的振动,其原因主要是由于介质流速的急剧增加,使调节阀前后差压急剧变化,引起整个调节阀产生严重振荡。

2 气蚀振动

气蚀振动大多发生在液态介质的调节阀内。气蚀产生的根本原因在于调节阀内流体缩流加速和静压下降引起液体汽化。调节阀开度越小,其前后的压差越大,流体加速并产生气蚀的可能性就越大,与之对应的阻塞流压降也就越小。

3 流体动力学振动

介质在阀内的节流过程也是其受摩擦、受阻力和扰动的过程。湍流体通过不良绕流体的调节阀时形成旋涡,旋涡会随着流体的继续流动的尾流而脱落。这种旋涡脱落频率的形成及影响因素十分复杂,并有很大的随机性,定量计算十分困难,而客观却存在一个主导脱落频率。当这一主导脱落频率(亦包括高次谐波)在与调节阀及其附属装置的结构频率接近或一致时,发生了共振,调节阀就产生了振动,并伴随着噪声。振动的强弱随主导脱落频率的强弱和高次谐波波动方向一致性的程度而定。

更多相关内容
Fisher费希尔 - 气动蝶阀七种常见问题解决方法 Fisher费希尔 - 气动蝶阀七种常见问题解决方法

气动蝶阀七种常见问题解决方法: 1、蝶阀安装在管道中的位置,***佳位置为立装,但不能倒装。 2、蝶阀蝶板安装配套法兰建议采用蝶阀专用法兰,即HGJ54-91型承插焊钢制法兰。 3、蝶阀阀杆安装 ...

FLSHER费希尔气动防喘振阀如何调试 FLSHER费希尔气动防喘振阀如何调试

FLSHER费希尔气动防喘振阀的具体调试: 1.调试前的准备工作 将阀门安装到管线上,按气路图将气源管接好;按电气接线图分别将电磁阀、定位器和阀位反馈的电线接好。 检查手轮的位置,是否在自 ...

罗斯蒙特475手操器调试Fisher费希尔阀门定位器步骤 罗斯蒙特475手操器调试Fisher费希尔阀门定位器步骤

罗斯蒙特475手操器调试Fisher费希尔阀门定位器步骤:智能化的费希尔定位器使用前需要进行调试,我们分别来讲费希尔DVC6200和DVC2000的调试步骤。 DVC6200的调试(以罗斯蒙特475手操器为例) ...

Fisher费希尔 - 球阀一般适用的场合有哪些 Fisher费希尔 - 球阀一般适用的场合有哪些

球阀一般会受到密封材料的限制,由于球阀通常是一些塑料材料形成的,球阀的主要原理是靠金属球在介质作用下对气体和液体进行调节,主要是金属球和塑料阀座之间的挤压达到调节的作用。 阀座之间 ...

艾默生fisher定位器-艾默生推出适用于各种环境条件的智能阀门定位器 艾默生fisher定位器-艾默生推出适用于各种环境条件的智能阀门定位器

艾默生的 TopWorxTM PD 系列采用霍尔效应技术可靠地检测和控制阀门位置。 艾默生的 TopWorxTM PD 系列专为严苛应用设计, 采用霍尔效应技术可靠地检测和控制阀门位置。 High resolution imag ...

阀门常见故障及排除方法--fisher阀门 阀门常见故障及排除方法--fisher阀门

阀门在使用或安装期间可能会出现内漏,由于使用时频繁的开关,或没按要求安装等等多方面的原因,导致阀门不能正常工作,下面小阀为您讲解一下阀门内漏的原因以及处理方法 施工期造成阀门内漏的 ...

Fisher费希尔 - 阀门限位开关与阀门定位器DVC6200有什么区别 Fisher费希尔 - 阀门限位开关与阀门定位器DVC6200有什么区别

阀门限位开关与阀门定位器有什么区别?很多新手对产品不是特别了解,今天就以为大家解答阀门限位开关和阀门定位器有什么区别! 1、阀门限位开关也叫回讯器,实际上是一个显示(反应)阀门开关 ...

Fisher费希尔 - 全球阀门产品未来发展趋势分析 Fisher费希尔 - 全球阀门产品未来发展趋势分析

随着国外大型成套技术的发展,出现了一系列新型成套设备与单机。与阀门有关的新型成套设备发展的特点是大型化、高参数化、高性能自动化和成套化,与这些成套设备的控制方式相适应。近20年来,国 ...

Fisher费希尔—阀门选型的说明 Fisher费希尔—阀门选型的说明

1、闸阀的选型 一般情况下,应首选闸阀。闸阀除适用于蒸汽、油品等介质外,还适用于含有粒状固体及粘度较大的介质,并适用于放空和低真空系统的阀门。对带有固体颗粒的介质,闸阀阀体上应带有 ...

艾默生费希尔久安产品特性实验室获得CNAS认可 艾默生费希尔久安产品特性实验室获得CNAS认可

近日,艾默生费希尔久安产品特性实验室通过CNAS实验室现场评定和后续考察,获得实验室国家认可证书,这标志着该实验室具备了按照ISO/IEC 17025体系展开检测的技能能力。 此项认证不只表现了艾 ...

Fisher费希尔 - 阀门定位器气控阀的调整方法 Fisher费希尔 - 阀门定位器气控阀的调整方法

费希尔阀门定位器使用I/P电气转换器,可以将电信号转换为气信号。那在转换过程中我们需要注意什么呢?该如何进行转换呢?下文便为你介绍。 费希尔阀门定位器的I/P电气转换器是由气源经恒节流孔 ...

Fisher费希尔 - 为燃气公司提供智能调压和计量解决方案 Fisher费希尔 - 为燃气公司提供智能调压和计量解决方案

在过往的天然气调压系统运行中,分销网络中的调压柜、调压箱、管道等末端设备一直是监控手段相对薄弱的一环。因此带来的非故障检修、紧急停气事故等问题也让消费者和运行人员倍感痛苦。与此同时 ...

Fisher费希尔-机械密封圈泄漏的机理泄漏种类分类 Fisher费希尔-机械密封圈泄漏的机理泄漏种类分类

1、机械密封圈的界面泄漏:在密封圈(油封、密封圈、垫片、填料)表面和与其接触件的表面之间产生的一种泄漏。如法兰与垫片之间、填料与轴或填料箱之间的泄漏。 2、机械密封圈的渗透泄漏:介质 ...

Fisher费希尔—低温阀为什么采用长颈阀盖 Fisher费希尔—低温阀为什么采用长颈阀盖

适用于介质温度-40℃——-196℃的阀门称之为低温阀门,而这类阀门一般都采用长颈阀盖。 采用长颈阀

工业自动化-智能阀门定位器普及原因Fisher(DVC2000/6200) 工业自动化-智能阀门定位器普及原因Fisher(DVC2000/6200)

Fisher(DVC2000/6200)智能阀门定位器,刚好我们有货有量,价好,质优,选择工博士湘景阀门仪表库存经销商,是你明智的选择,有***的技术团队为你保驾护航。 随着工业自动化进程,气动阀门的 ...

Fisher费希尔-艾默生资产监测器边缘分析设备促进资产数字化转型 Fisher费希尔-艾默生资产监测器边缘分析设备促进资产数字化转型

艾默生资产监测器边缘分析设备提高关键资产的可视性并增加预测性分析。 艾默生推出 AMS 资产监测器边缘分析设备,对关键资产的数据和分析进行数字化转型,从而提高运营性能和决策水平。AMS 资 ...

阀门知识-解决调节阀故障的处理方法 阀门知识-解决调节阀故障的处理方法

出现故障时,重点检查哪些部位 1阀体内壁 对于使用在高压差和腐蚀性介质场合的调节阀,阀体内壁经常受到介质的冲击和腐蚀,必须重点检查耐压,耐腐的情况。 2阀座 调节阀在工作时,因介质渗 ...

Fisher费希尔67系列直接作用式调压阀特征: Fisher费希尔67系列直接作用式调压阀特征:

Fisher67系列直接作用式调压阀特征: 结构紧凑-67c系列调压器再设计上具备突出的性能,结构紧凑且重量轻巧; 面板安装-面板安装结构包括配备又1/4NPT通气口、弹簧箱体的手轮式调节螺杆和安装 ...

Fisher 费希尔 - 费希尔的常见问题解析 Fisher 费希尔 - 费希尔的常见问题解析

Fisher-费希尔阀门定位器控制阀在使用中,我们可能会遇到一些不同的情况,如:定位器信号调节器力不稳定、气动阀源调节器力不稳定、定位器无气动阀等,下面编辑将介绍这些情况。 Fisher费希尔 ...

Fisher费希尔-防汽蚀阀修剪有助于提高工厂的可用性和安全性。 Fisher费希尔-防汽蚀阀修剪有助于提高工厂的可用性和安全性。

爱默生的费舍尔™卡夫特罗尔六角阀严格的工作阀门修剪减少或消除空化,以改善旋转阀的性能和延长使用寿命。 费舍尔Vee-Ball™旋转控制阀现在可与卡佛特罗™六角阀抗空化修剪,以减少或消除由空 ...

栏目导航
客服中心

在线咨询:QQ


联系方式联系方式

联 系 人:黄经理

联系QQ:3271883383

联系电话:13522565663


扫码添加微信(手机端请先保存图片)

工作时间工作时间

工作日:9:00-17:00

节假日:仅处理紧急事件

Contact us

联系我们

联系电话 QQ咨询
QQ咨询

3271883383

公司地址
返回顶部